Rabu, 27 Februari 2013

Penemuan elektron

Kemajuan yang sangat pesat dalam sains paruh pertama abad 20 ditandai dengan perkembangan paralel teori dan percobaan. Sungguh menakjubkan mengikuti perkembangan saintifik sebab kita dapat dengan jelas melihat dengan jelas berbagai lompatan perkembangan ini. Sungguh kemajuan dari penemuan elektron, sampai teori kuantum Planck, sampai penemuan inti atom Rutherford, teori Bohr, sampai dikenalkan teori mekanika kuantum merangsang kepuasan intelektual. Dalam kimia penemuan ide umum orbital dan konfigurasi elektron memiliki signifaksi khusus. Ide-ide ini dapat dianggap sebagai baik modernisasi dan pelengkapan teori atom.

1.1 Penemuan elektron
Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut. Anda dapat mempelajari perkembangan kronologis pemahaman hubungan antara materi dan listrik.

Tabel 1.1 Kemajuan pemahaman hubungan materi dan listrik.

Tahun Peristiwa
1800 Penemuan baterai (Volta)
1807 isolasi Na dan Ca dengan elektrolisis (Davy)
1833 Penemuan hukum elektrolisis (Faraday)
1859 Penemuan sinar katoda (Plücker)
1874 Penamaan elektron (Stoney)
1887 Teori ionisasi (Arrhenius)
1895 Penemuan sinar-X (Röntgen)
1897 Bukti keberadaan elektron (Thomson)
1899 Penentuan e/m (Thomson)
1909-13 Percobaan tetes minyak (Millikan)
Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai hukum elektrolisis Faraday.

Faraday sendiri tidak bermaksud menggabungkan hukum ini dengan teori atom. Namun, kimiawan Irish George Johnstone Stoney (1826-1911) memiliki wawasan sehingga mengenali pentingnya hukum Faraday pada struktur materi; ia menyimpulkan bahwa terdapat satuan dasar dalam elektrolisis, dengan kata lain ada analog atom untuk kelistrikan. Ia memberi nama elektron pada satuan hipotetik ini.

Kemudian muncul penemuan menarik dari percobaan tabung vakum. Bila kation mengenai anoda bila diberikan beda potensial yang tinggi pada tekanan rendah (lebih rendah dari 10-2 – 10-4 Torr)), gas dalam tabung, walaupun merupakan insulator, menjadi penghantar dan memancarkan cahaya. Bila vakumnya ditingkatkan, dindingnya mulai menjadi mengkilap, memancarkan cahaya fluoresensi (Gambar 1.1). Fisikawan Jerman Julius Plücker (1801-1868) berminat pada fenomena ini dan menginterpreatsinya sebagai beikut: beberapa partikel dipancarkan dari katoda. Ia memmebri nama sinar katoda pada partikel yang belum teridentifikasi ini (1859).


Torr adalah satuan tekanan yang sering digunakan untuk mendeskripsikan tingkat vakum. (1 Torr = 133, 3224 Pa)

Patikel yang belum teridentifikasi ini, setelah dipancarakan dari katoda, akan menuju dinding atbung atau anoda. Ditemukan bahwa partikel tersebut bermuatan karena lintasan geraknya akan dibelokkan bila medan magnet diberikan. Lebih lanjut, sifat cahaya tidak bergantung jenis logam yang digunakan dalam tabung katoda, maupun jenis gas dalam tabung pelucut ini. Fakta-fakta ini menyarankan kemungkinan bahwa partikel ini merupakan bahan dasar materi.

Fisikawan Inggris Joseph John Thomson (1856-1940) menunjukkan bahwa partikel ini bermuatan negatif. Ia lebih lanjut menentukan massa dan muatan partikel dengan memperkirakan efek medan magnet dan listrik pada gerakan partikel ini. Ia mendapatkan rasio massa dan muatannya. Untuk mendapatkan nilai absolutnya, salah satu dari dua tersebut harus ditentukan.

Fisikawan Amerika Robert Andrew Millikan (1868-1953) berhasil membuktikan dengan percobaan yang cerdas adanya partikel kelistrikan ini. Percobaan yang disebut dengan percobaan tetes minyak Millikan. Tetesan minyak dalam tabung jatuh akibat pengaruh gravitasi. Bila tetesan minyak memiliki muatan listrik, gerakannya dapat diatur dengan melawan gravitasi dengan berikan medan listrik. Gerakan gabungan ini dapat dianalisis dengan fisikan klasik. Millikan menunjukkan dengan percobaan ini bahwa muatan tetesan minyak selalu merupaka kelipatan 1,6×10-19 C. Fakta ini berujung pada nilai muatan elektron sebesar 1,6 x 10-19 C.

Rasio muatan/massa partikel bermuatan yang telah diketahui selama ini sekitar 1/1000 (C/g). Ratio yang didapatkan Thomson jauh lebih tinggnilai tersebut (nilai akurat yang diterima adalah 1,76 x108 C/g), dan penemuan ini tidak masuk dalam struktur pengetahuan yang ada saat itu. Partikel ini bukan sejenis ion atau molekul, tetapi harus diangap sebagai bagian atau fragmen atom.

Latihan 1.1 Perhitungan massa elektron.

Hitung massa elektron dengan menggunakan nilai yang didapat Millikan dan Thomson.

Jawab: Anda dapat memperoleh penyelesaian dengan mensubstitusikan nilai yang didapat Millikan pada hubungan: muatan/massa = 1,76 x 108 (C g-1). Maka, m = e/(1,76 x 108 C g-1) = 1,6 x 10-19 C/(1,76 x 108C g-1) = 9,1 x 10-28 g.

Muatan listrik yang dimiliki elektron (muatan listrik dasar) adalah salah satu konstanta universal dan sangat penting.

Latihan 1.2 Rasio massa elektron dan atom hidrogen.

Hitung rasio massa elektron dan atom hidrogen.

Jawab: Massa mH atom hidrogen atom adalah: mH = 1 g/6 x 1023 = 1,67 x 10-24g. Jadi, me : mH = 9,1 x 10-28g : 1,67 x10-24g = 1 : 1,83 x 103.

Sangat menakjubkan bahwa massa elektron sangat kecil. Bahkan atom yang paling ringanpun, hidrogen, sekitar 2000 kali lebih berat dari massa elektron.

Reaksi Redoks dalam Kehidupan Sehari-hari

Konsep Reaksi Redoks
Pengertian oksidasi dan reduksi disini lebih melihat dari segi transfer oksigen, hidrogen dan elektron. Disini akan juga dijelaskan mengenai zat pengoksidasi (oksidator) dan zat pereduksi (reduktor) – redoks.


Reaksi Redoks Dalam Kehidupan Sehari-hari

1. Zat pemutih
Zat pemutih adalah senyawa yang dapat digunakan untuk menghilangkan warna benda, seperti pada tekstil, rambut dan kertas. Penghilangan warna terjadi melalui reaksi oksidasi. Oksidator yang biasa digunakan adalah natrium hipoklorit (NaOCl) dan hidrogen peroksida (H2O2).

Warna benda ditimbulkan oleh elektron yang diaktivasi oleh sinar tampak. Hilangnya warna benda disebabkan oksidator mampu menghilangkan elektron tersebut. Elektron yang dilepaskan kemudian diikat oleh oksidator.
Reaksinya:



2. Fotosintesis


Fotosintesis adalah proses reaksi oksidasi-reduksi biologi yang terjadi secara alami. Fotosintesis merupakan proses yang kompleks dan melibatkan tumbuhan hijau, alga hijau atau bakteri tertentu. Organisme ini mampu menggunakan energi dalam cahaya matahari (cahaya ultraviolet) melalui reaksi redoks menghasilkan oksigen dan gula.
Reaksi oksidasi:


Reaksi reduksi:


3. Pembakaran
Pembakaran merupakan contoh reaksi redoks yang paling umum. Pada pembakaran propana
(C3H8-;) di udara (mengandung O2), atom karbon teroksidasi membentuk CO2 dan atom oksigen tereduksi menjadi H2O.
Reaksi:


4. baterai Nikel Kadmium

Baterai nikel-kadmium merupakan jenis baterai yang dapat diisi ulang seperti aki,baterai HP, dll. Anoda yang digunakan adalah kadmium, katodanya adalah nikel danelektrolitnya adalah KOH. Reaksi yang terjadi:

anoda : Cd + 2 OH-→Cd(OH)2+ 2e

katoda : NiO(OH) + H2O→Ni(OH)2+ OH-

Potensial sel yang dihasilkan sebesar 1,4 volt.

5. Baterai alkali

Baterai alkali hampir sama dengan bateri karbon-seng. Anoda dan katodanya samadengan baterai karbon-seng, seng sebagai anoda dan MnO2 sebagai katoda.Perbedaannya terletak pada jenis elektrolit yang digunakan. Elektrolit pada bateraialkali adalah KOH atau NaOH. Reaksi yang terjadi adalah:

anoda: Zn + 2 OH-→ZnO + H2O + 2e

katoda: 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-

Potensial sel yang dihasilkan baterai alkali 1,54 volt. Arus dan tegangan padabaterai alkali lebih stabil dibanding baterai karbon-seng.

6. Baterai perak oksida

Bentuk baterai ini kecil seperti kancing baju biasa digunakan untuk baterai arloji,kalkulator, dan alat elektronik lainnya. Anoda yang digunakan adalah seng,katodanya adalah perak oksida dan elektrolitnya adalah KOH. Reaksi yang terjadi:
anoda : Zn→Zn2++ 2 e-

katoda : Ag2O + H2O + 2e→2Ag + 2 OH-

Potensial sel yang dihasilkan sebesar 1,5 volt.
7. AKI
Jenis baterai yang sering digunakan pada mobil adalah baterai 12 volt timbal-asamyang biasa dinamakan Aki. Baterai ini memiliki enam sel 2 volt yang dihubungkanseri. Logam timbal dioksidasi menjadi ion Pb2+
dan melepaskan duaelektron di anoda. Pb dalam timbal (IV) oksida mendapatkan dua elektron danmembentuk ion Pb2+ di katoda. Ion Pb2+bercampur dengan ion SO42- dari asamsulfat membentuk timbal (II) sulfat pada tiap-tiap elektroda. Jadi reaksi yang terjadiketika baterai timbal-asam digunakan menghasilkan timbal sulfat pada keduaelektroda


.PbO2+ Pb + 2H2SO4→2PbSO4+ 2H2O

Reaksi yang terjadi selama penggunaan baterai timbal-asam bersifat spontan dantidak memerlukan input energi. Reaksi sebaliknya, mengisi ulang baterai, tidakspontan karena membutuhkan input listrik dari mobil. Arus masuk ke baterai danmenyediakan energi bagi reaksi di mana timbal sulfat dan air diubah menjaditimbal(IV) oksida, logam timbal dan asam sulfat.

2PbSO4+ 2H2O→PbO2+ Pb + 2H2SO4

8. Baterai karbon-seng

Kalau anda memasukkan dua atau lebih baterai dalam senter, artinya andamenghubungkannya secara seri. Baterai harus diletakkan secara benar sehinggamemungkinkan elektron mengalir melalui kedua sel. Baterai yang relatif murah iniadalah sel galvani karbon-seng, dan terdapat beberapa jenis, termasuk standarddan alkaline. Jenis ini sering juga disebut sel kering karena tidak terdapat larutanelektrolit, yang menggantikannya adalah pasta semi padat.Pasta mangan(IV) oksida (MnO2) berfungsi sebagai katoda. Amonium klorida(NH4Cl) dan seng klorida (ZnCl2) berfungsi sebagai elektrolit. Seng pada lapisanluar berfungsi sebagai anoda.Reaksi yang terjadi :

anoda : Zn→Zn2++ 2 e-


katoda : 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-

Dengan menambahkan kedua setengah reaksi akan membentuk reaksi redoksutama yang terjadi dalam sel kering karbon-seng.


Zn + 2MnO2+ H2O→Zn2++ Mn2O3+ 2OH-

Baterai ini menghasilkan potensial sel sebesar 1,5 volt. baterai ini bias digunakanuntuk menyalakan peralatan seperti senter, radio, CD player, mainan, jam dansebagainya.
9. .pengaratan logam


4Fe(s)+3O2(g)→2Fe2O3(s)

10. RedoksdalamFotografi


FilmfotografidibuatdariplastikyangdilapisigelatinyangmengandungmilyaranbutiranAgBr,yangpekaterhadapcahaya

.-Ketikacahayamengenaibutiran-butiranAgBr,terjadilahreaksiredoks

.-SehinggaionAg+tereduksimenjadilogamnya,danionBr-menjadigasBromin

11. Pernapasan sel

contohnya, adalah oksidasi glukosa (C6H12O6) menjadi CO2 dan reduksi oksigen menjadi air. Persamaan ringkas dari pernapasan sel adalah:

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O

12. Reaksidalamselbahanbakar

2H2+4OH-→4H2O+4e
O2(g)+2H2O+4e-→4OH-
Reaksitotal
2H2(g)+O2(g)→2H2O(l)

13. Las karbits

Karbit atau Kalsium karbida adalah senyawa kimia dengan rumus kimia CaC2. Karbit digunakan dalam proses las karbit dan juga dapat mempercepat pematangan buah.
Persamaan reaksi Kalsium Karbida dengan air adalah:
CaC2 + 2 H2O → C2H2 + Ca(OH)2
Karena itu 1 gram CaC2 menghasilkan 349ml asetilen. Pada proses las karbit, asetilen yang dihasilkan kemudian dibakar untuk menghasilkan panas yang diperlukan dalam pengelasan.

14. Pada perkaratan besi

Pada peristiwa perkaratan (korosi), logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi.
Rumus kimia dari karat besi adalah Fe2O3 . xH2O => berwarna coklat-merah.

Korosi merupakan proses elektrokimia. Pada korosi besi, bagian tertentu
dari besi itu berlaku sebagai anode, dimana besi mengalami oksidasi.

Fe(s) -----> Fe2+(aq) +2e .............. E=+0,44V
O2(g) + 2H2O(l) +4e --------> 4OH- ....... E=+0,40V

Ion besi (II) yg terbentuk pd anode selanjutnya teroksidasi membentuk ion besi (III) yg kemudian membentuk senyawa oksida terhidrasi, Fe2O3 . xH2O, yaitu karat besi.
15. PENGOLAHAN AIR KOTOR (SEWAGE)

=> pengolahan air kotor ada 3 tahap : tahap primer, sekunder, dan tersier. Saya akan menyingkat tahap ini satu persatu...

a) TAHAP PRIMER
=> untuk memisahkan sampah yang tidak larut air, yang dilakukan dengan penyaringan dan pengendapan.

b) TAHAP SEKUNDER
=> untuk menghilangkan BOD dengan jalan mengOKSIDASInya.

c) TAHAP TERSIER
=> untuk menghilangkan sampah yang masih terdapat.
Lumpur aktif merupakan Lumpur yang kaya dengan bakteri yang dapat menguraikan limbah organic yang dapar mengalami biodegradasi. Bakteri aerobmengubah sampah organic menjadi biomassa dan CO2, N menjadi ammoniumdan nitrat, P menjadi fosfat.

16. Penyapuhan emas

Dalam proses penyepuhan dengan emas reaksi yg terjadi adalah reduksi ion-ion emasmenjadi logamnya,

Au+ + e- -> Au atau Au3+ + 3e- -> Au2.


17. Peleburan biji logam

Untuk besi, reaksi totalnya adalah

2Fe2O3 + 3C -> 4Fe + 3CO2 Fe2O3

adalah bijih besi (hematit) dengan kokas (karbon/C) sebagai reduktor.

18. Dalam sistem biosensor
sistem biosensor berupa alat pengukur kadar gula dan kolesterol berbasis enzimdidalam tanah untuk keperluan medis yang menggunakan teknologi film tebal(thick film). Alat Pengukur kadar gula dan kolesterol dalam darah bekerjamenggunakan prinsip elektrokimia amperometrik. Prinsip kerja deteksi dari alatini didasari pada reaksi yang terjadi antara enzim glucose oxidase dancholesterol oxidase dengan sample darah yang diukur. Proses reaksi kimiawi inimenghasilkan aliran arus listrik yang kemudian diproses oleh signal conditioningdan data akusisi. Hasil proses ini merupakan besar kadar gula dan kolesterol didalam darah. Peralatan ini bersifat portable, kompak dan berdaya rendah

19. Pengolahan Alumunium
Zaman dahulu kala, Alumunium termasuk logam yang harganya mahaldipasaran. Hal ini dikarenakan jumlahnya yang sedikit di alam dan caramendapatannya yang cukup sulit. Cara memperolehnya dengan cara elektrolisistidak berhasil karena apabila larutan garam alumunium dihidrolisis, air lebihmudah direduksi daripada Ion Alumunium. Hal ini menyebabkan gas Hidrogenyang terbentuk di anoda dan bukannya Alumunium. Elektrolisis leburanAlumunium juga tidak berhasil karena 2 hal : Larutan tidak berbentuk ion dansenyawanya mudah menguap apabila bersuhu tinggi. Elektrolisis oksidanya jugatidak praktis karena titik lelehnya yang tinggi yang mencapai 2000 derajatcelsius.Pada tahun 1886, Charles Hall dari Oberlin College menemukan cara yangdapatdigunakan untuk mengelektrolisis Alumunium Oksida dengan menggunakanAl2O3dengan Kriolit Na3AlF3. Penambahan Kriolit ke dalam

Al2O3menurunkantemperatur campuran hingga 1000 derajat celcius, sehingga elektrolisi dapatdilaksanakan. Bejana yang menampung campuran alumunium terbuat dari besiyang dilapisi beton yang bertindak sebagai katoda dan batang karbon yangberfungsi sebagai Anoda.

20. Pengolahan Magnesium

Magnesium merupakan logam yang penting karena sangat ringan. Magnesiumdijumpai berlimpah dalamair laut. Ion magnesium diendapkan dari air lautsebagai hodroksida, kemudian Mg(OH)2
diubah menjadi kloridanya dengan caramereduksinya dengan asam klorida. setelah airnya menguap, MgCl2dilelehkandan dielektrolisis. Magnesium dihasilkan di katoda dan Klor di Anoda.

Selasa, 11 Desember 2012

Test Aptitude (Tes Bakat)

Aptitude test atau tes bakat mirip dengan tes keterampilan dan kecerdasan, dan digunakan untuk menentukan kemampuan seseorang dalam melaksanakan tugas- tugas tertentu.Tes bakat terdiri dari soal-soal yang ditujukan untuk mengevaluasi kemampuan khusus peserta di dalam suatu bidang tertentu.

Tes bakat memiliki berbagai tujuan dan dilakukan oleh berbagai pihak yang berkepentingan. Guru menggunakan tes ini untuk mengukur kinerja siswa mereka, sekolah dapat menggunakannya untuk menentukan pengetahuan individu dalam bidang tertentu,dan pengusaha sering menggunakannya untuk menentukan kandidat yang paling mampu atau paling cocok untuk suatu pekerjaan. Selain itu, tes berbasis bakat dianggap sebagai salah satu tes yang paling berguna dari tes karir.

Jenis Pengukuran Bakat

Tes bakat yang berusaha untuk mengukur kemampuan seseorang di bakat tertentu, seperti verbal, numerik, ulama, sensorik, spasial atau mekanis logika, dan dan keterampilan penalaran.

1) Verbal


ini jenis pengujian yang mengukur penalaran verbal (bahasa) yang dianggap penting dalam penjualan / pemasaran ketika kemampuan bahasa dapat memotivasi konsumen untuk menerima penjualan, atau mengubah pilihan dari merek lain


2) Numerik


Tes ini penting dalam bidang keuangan, perbankan, asuransi dan bidang terkait lainnya dimana angka dan penalarannya merupakan inti dari bisnis /pekerjaan tersebut


3) Clerikal


Tes ini mengukur kemampuan calon untuk melihat kesalahan. Untuk mendapatkan petugas yang dapat menjaga pekerjaan berjalan lancar dan akurat - maka tes yang dirancang untuk mengukur calon pekerja dalam kecepatan dan ketepatan serta kemampuan dalam mengidentifikasi kesalahan.


4) Sensorik


Sesuai dengan namanya, tes ini adalah mengukur sensor anggota badan seperti mata atau telinga untuk pekerjaan di mana koordinasi ketajaman warna, suara dan visual penting - seperti tekstil, dekorasi interior, industri otomotif, dll

5) Kemampuan spasial


Jenis tes yang umum bagi mereka yang memilih karir di mana pemahaman ruang akan sangat menentukan seperti pilot, astronot atau karier terkait lainnya.

6) Kemampuan mekanis


Tes ini dirancang untuk mengukur seberapa cerdik dan cepat kandidat dapat menafsirkan dan memecahkan masalah yang berkaitan dengan kesalahan mekanis. Tes kemampuan mekanik ini biasanya untuk para pekerja teknik.

7) Ketangkasan diagram

Ini pengujian penalaran logis menggunakan gambar dan diagram, bukan teks atau angka.

Minggu, 02 Desember 2012

Viskositas

Viskositas adalah ukuran kekentalan fluida yang menyatakan besar kecilnya gesekan di dalam fluida. Semakin besar viskositas fluida, maka semakin sulit suatu benda bergerak di dalam fluida tersebut. Di dalam zat cair, viskositas dihasilkan oleh gaya kohesi antara molekul zat cair. Sedangkan dalam gas, viskositas timbul sebagai akibat tumbukan antara molekul gas.
Dalam suatu fluida ideal (fluida tidak kental) tidak ada viskositas (kekentalan) yang menghambat lapisan-lapisan fluida ketika lapisan-lapisan tersebut menggeser satu di atas lainnya. Untuk fluida yang sangat kental seperti madu, diperlukan gaya yang lebih besar, sedangkan untuk fluida yang kurang kental (viskositasnya kecil), seperti air, diperlukan gaya yang lebih kecil.
Tingkat kekentalan suatu fluida juga bergantung pada suhu. Semakin tinggi suhu zat cair, semakin kurang kental zat cair tersebut. Misalnya ketika ibu menggoreng , minyak goreng yang awalnya kental menjadi lebih cair ketika dipanaskan. Sebaliknya, semakin tinggi suhu suatu zat gas, semakin kental zat gas tersebut.
Tingkat kekentalan fluida dinyatakan dengan koofisien viskositas. Nah, jika fluida makin kental maka gaya tarik yang dibutuhkan juga makin besar. Dalam hal ini, gaya tarik berbanding lurus dengan koofisien kekentalan.
Satuan Sistem Internasional (SI) untuk koofisien viskositas adalah Ns/m2 = Pa.s (pascal sekon). Satuan CGS (centimeter gram sekon) untuk si koofisien viskositas adalah dyn.s/cm2 = poise (P). Viskositas juga sering dinyatakan dalam sentipoise (cP). 1 cP = 1/100 P. Satuan poise digunakan untuk mengenang seorang Ilmuwan Perancis, almahrum Jean Louis Marie Poiseuille.
1 poise = 1 dyn . s/cm2 = 10-1 N.s/m2
Fluida Temperatur (o C) Koofisien Viskositas
Air 0 1,8 x 10-3
20 1,0 x 10-3
60 0,65 x 10-3
100 0,3 x 10-3
Darah (keseluruhan) 37 4,0 x 10-3
Plasma Darah 37 1,5 x 10-3
Ethyl alkohol 20 1,2 x 10-3
Oli mesin (SAE 10) 30 200 x 10-3
Gliserin 0 10.000 x 10-3
20 1500 x 10-3
60 81 x 10-3
Udara 20 0,018 x 10-3
Hidrogen 0 0,009 x 10-3
Uap air 100 0,013 x 10-3

Minggu, 18 November 2012

Proses Terbentuknya Bulan


Teori Giant Impact merupakan hipotesa bagaimana proses terbentuknya bulan. Ilmuwan berteori, Bulan terbentuk akibat bergabungnya serpihan-serpihan pecahan Bumi yang ketika itu masih muda bertabrakan dengan benda langit berukuran sebesar planet Mars.

Salah satu bukti yang mendukung hipotesa ini adalah contoh-contoh bebatuan yang diambil para astronot saat mengunjungi Bulan. Dari bebatuan itu, terindikasi bahwa permukaan Bulan sebelumnya berbentuk cair dan kemungkinan, ia memiliki inti kecil dari besi dengan kepadatan yang lebih rendah dibanding Bumi.

Adapun benda langit yang menghantam Bumi disebut sebagai Theia, diambil dari nama dewi bangsa Yunani, yang merupakan ibu dari Selene, dewi Bulan.

Menurut teori Giant Impact, Theia terbentuk bersama dengan planet-planet lainnay di tata surya sekitar 4,6 miliar tahun yang lalu. Ia mengitari Matahari dalam orbit yang kurang lebih sama dengan Bumi sekitar 60 derajat di depan atau di belakang Bumi.

Stabilitasnya dalam mengitari Bumi kemudian terganggu karena Theia kemudian tumbuh melampaui batas maksimal 10 persen massa planet Bumi. Akibatnya, gaya gravitasi membuat Theia meninggalkan posisi orbitnya dan mendekati Bumi lalu saling bertabrakan.

Menurut para astronom, tabrakan antara Bumi dan Theia terjadi sekitar 4,53 miliar tahun lalu, atau sekitar 30 sampai 50 juta tahun setelah terbentuknya sistem tata surya. Akan tetapi, dari bukti-bukti terakhir, terindikasi bahwa tabrakan itu terjadi lebih lambat, yakni 4,48 tahun lalu.

Sabtu, 17 November 2012

Kata-kata Mutiara

Jika anda bekerja semata-mata untuk uang, anda tidak akan menjadi kaya kerananya. Tetapi jika anda menyintai pekerjaan yang anda lakukan itu, kejayaan akan menjadi milik anda. ~ Ray Kroc (Pengasas McDonalds)

buatlah hidupmu sempurna dan membuat hidup disekitarmu bahagia karena ini akan menjadikan hidup kamu bermanfaat masalah bukan untuk dihendari karena masalah akan membuat hidup kita kuat

jangan menyesali apa yang kamu lakukan karena kamu akan menyesal jika kamu tak melakukan jika itu ada kesempatan

Kebahagiaan adalah milik mereka yang mempunyai impian, dan punya keberanian untuk berusaha mewujudkannya jadi kenyataan.

Jangan pernah melupakan pemberian Tuhan, baik itu anugerah maupun cobaan. Selalu ada makna disetiap peristiwa. God is Good.

Ketika kamu merasa sulit untuk mewujudkan mimpimu, percayalah bahwa sebuah mimpi yang lebih besar sedang menantimu. Have Faith!

Dalam hidup, jangan pernah biarkan pendapat seseorang tentangmu mengubah dirimu menjadi seseorang yg kamu tahu bukan dirimu.

Mencintai seseorang bukan hanya dengan mengucapkannya setiap hari, tapi juga dengan menunjukkannya dalam segala hal sepenuh hati.

Kadang, meski marah atas apa yg telah dilakukan dia yg kamu cinta, kamu tetap tak mampu berhenti mencintainya.

Jangan mengingat kebaikan yang pernah kamu lakukan, tapi ingatlah kebaikan yang orang lain lakukan kepadamu.

Bersyukur adalah cara terbaik agar merasa cukup, bahkan ketika berkekurangan. Jangan berharap lebih sebelum berusaha lebih.

Ketika kamu merasa sendiri dan tak ada yg peduli, ingatlah bahwa ada seseorang di luar sana yg begitu ingin memiliki hidup yg kamu jalani.

Cinta mungkin akan membuatmu terluka, tapi ia membuatmu semakin dewasa. Jadilah pribadi yang selalu memaafkan, terutama hatimu.

Kebencian hanya merugikan diri sendiri, tersenyumlah ketika disakiti. Hati tanpa benci membentuk jiwa yang tegar dan damai.

“Alasan kenapa seseorang tak pernah meraih cita-citanya adalah karena dia tak mendefinisikannya, tak mempelajarinya, dan tak pernah serius berkeyakinan bahwa cita-citanya itu dapat dicapai” (Dr Denis Waitley, pakar motivasi dan penulis buku-buku self-help)

Banyak kegagalan dalam hidup ini dikarenakan orang-orang tidak menyadari betapa dekatnya mereka dengan keberhasilan saat mereka menyerah. – Thomas Alva Edison

Jadilah diri anda sendiri. Siapa lagi yang bisa melakukannya lebih baik ketimbang diri anda sendiri? – Frank Giblin, Ii

Kebanggaan kita yang terbesar adalah bukan tidak pernah gagal, tetapi bangkit kembali setiap kali kita jatuh. – Confusius

“Keyakinan merupakan suatu pengetahuan di dalam hati, jauh tak terjangkau oleh bukti” (Kahlil Gibran, Pujangga)

“Orang yang terlalu sibuk sangat jarang bisa mengubah pendapatnya” (Friedrich Nitezche (1844-1900), filsuf Jerman)